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Abstract

The problem considered in this paper deals with reconstruction of stress fields in a plane elastic domain from discrete

data on stress orientations. The problem is reduced to the determination of unknown coefficients in linear combinations

of holomorphic functions used for the representation of complex potentials in plane elasticity. The coefficients are

found by fitting the data to the calculated principal directions. This leads to an overdetermined system of linear

algebraic equations which elements are subjected to experimental errors. The system is homogeneous; therefore, the

coefficients cannot be determined uniquely. However, it allows for the unique reconstruction of stress trajectories. The

determination of maximum shear stresses is non-unique: it can be multiplied by (i) an arbitrary real positive constant if

principal directions are non-harmonic function of spatial coordinates; or (ii) a real valued positively defined bi-holo-

morphic function that depends on four real constants if principal directions are harmonic. The determination of the

mean stresses is performed by integration, which introduces another real additive constant into the complete solution.

The proposed technique is capable of identification of singular (isotropic) points in the field of stress trajectories.

This is illustrated in examples that use for the reconstruction either synthetic or real data from photoelasticity and

geophysics.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

In geophysics, the discrete data on principal directions are used to compose stress trajectories (e.g.,

Hansen and Mount, 1990) or as the input for modelling tectonic stress fields in the earth’s crust (e.g.,

Coblentz et al., 1995). Stress orientations can be specified by introducing so called (Timoshenko and
Goodier, 1970) principal directions of a plane symmetric stress tensor as the angles of inclination of
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principal stress axes to any reference direction. Continuous fields of principal directions can directly be used

for the determination of elastic stress fields, for instance, in photoelasticity this is achieved by integration of

the equation of equilibrium (e.g., Frocht, 1941). This paper presents an alternative approach for the

determination of elastic stresses in plane elasticity. It does not require integration and uses the principal
directions at discrete points to uniquely determine trajectories of elastic stresses while other characteristics

of the stress field are found with minimum arbitrariness.

The concept of stress trajectories comes from photoelasticity, therefore one can adopt the following

definition due to Frocht (1941): stress trajectories or isostatics are curves the tangents to which represent the

directions of one of the principal stresses at the points of tangency. Since there exist two mutually

orthogonal principal directions at each point, stress trajectories can be viewed as curvilinear coordinate

lines. This concept is widely used in photoelasticity for separation of principal stresses r1 and r2 from the

Lame–Maxwell equations of equilibrium
or1

os1
þ r1 � r2

q2

¼ 0;
or2

os2
þ r1 � r2

q1

¼ 0 ð1Þ
Here sk are arc lengths along stress trajectories, qk ¼ ðohk=oskÞ�1
are radii of curvature of the stress tra-

jectories, hk are principal directions, subscript k ¼ 1; 2 is introduced in order to distinguish families of stress

trajectories.

System (1) constitutes a complete system of partial differential equations for the determination of two
principal stresses provided that the stress trajectories are known. This system is of hyperbolic type with the

stress trajectories being the characteristics of it, thus either Cauchy or Goursat boundary value problems

may be posed for the determination of principal stresses (e.g., Mukhamediev, 1991). It should be noted that

in photoelasticity the maximum shear stress, smax ¼ jr1 � r2j=2, is also observed; therefore, in principle, any

one of these equations can be used as, for instance, in the classical Filon’s method. The problem of sep-

aration of principal stresses is discussed in detail in Frocht (1941), Coker and Filon (1957), Alexandrov and

Akhmetzyanov (1973), Kuske and Robertson (1974) and other monographs on the photoelastic method. In

any case, the magnitudes of boundary stresses have to be engaged in the separation of principal stresses by
integration of system (1).

It is evident that no constitutive relationships are required for solving system (1). Therefore, solutions

found from this system alone can be attributed to any material regardless of its mechanical behaviour. In

photoelasticity, it is proposed (Alexandrov and Akhmetzyanov, 1973; Kuske and Robertson, 1974) to

verify the results obtained after integration of (1) by satisfying some differential equations of the second

order obtained by manipulations with the equations of equilibrium and the compatibility conditions. The

latter in the case of the absence of body forces can be replaced by Laplace’s equation
Dðr1 þ r2Þ ¼ 0 ð2Þ
Therefore in photoelasticity, the equation responsible for constitutive behaviour is used in order to check

the accuracy of the results obtained when separating principal stresses rather than the third equation im-

posed on two unknown principal stresses.
The complete system of equations (1) and (2) represents an ill-posed problem provided that stress ori-

entations are known within elastic regions. Galybin and Mukhamediev (1999) showed that given stress

orientations and curvatures of stress trajectories on the boundary, one faces a non-classical boundary value

problem of plane elasticity that can have a certain number of linearly independent solutions or be

unsolvable. This depends upon the index, 2K, of the problem that can be defined as the increment gained by

any one of two principal directions after the complete counterclockwise traverse of the boundary of a

simply connected domain. The increment is calculated in radians, divided by p, it is an integer or zero. In

particular, it was found that for 2K < �1 no solutions exist, for 2K ¼ �1 there exist a unique solution and
four solutions exist for 2K ¼ 0. This analysis supports the fact that the knowledge of stress trajectories
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within the domain is redundant and leads to an ill-posed problem. It will be seen later that the application

of proper methods for solving ill-posed problems is required; however, there is no need to formulate a

boundary value problem in terms of stresses in order to solve the system (1) and (2).

Although this approach might be of less significance as far as photoelasticity is concerned (since it is
already known that the model is elastic and (2) should be satisfied), it can be vital for other applications of

the stress trajectory concept especially if stress orientations are known at discrete points rather than

continuously. In geophysics, for example, the problem of determination of stress fields from known ori-

entations of principal stresses is of great significance. Experimental data on in situ stresses are obtained by

direct instrumental measurements such as overcoring or hydraulic fracturing as well as retrieved from the

analysis of natural stress indicators as focal mechanisms of earthquakes, alignments of geological bodies,

geometry and kinematics of fracture structures in the crust, stress induced borehole ‘‘breakouts’’, etc.

Reliable data on the stresses in the earth’s crust have been summarized and incorporated into the world
stress database (Reinecker et al., 2003). These observations indicate that two of three principal stresses in

the upper earth’s crust are usually sub-horizontal (e.g., Zoback et al., 1989). Thus, 2D elastic problems are

frequently employed in modelling of regional stress states (e.g., Coblentz et al., 1995).

In contrast to the photoelastic method that provides a continuous field of stress trajectories with certain

accuracy, the orientations of stresses in the earth’s crust are known at some discrete points with much worse

accuracy due to various reasons. If data are dense enough, then a smooth continuous field of stress tra-

jectories can be compiled by statistical and interpolation methods (e.g., Hansen and Mount, 1990; Lee and

Angelier, 1994). However, it should also be noted that the presence of isolated singular points significantly
complicates the problem. At such points (also known as isotropic points in photoelasticity, e.g., Frocht,

1941) stresses are hydrostatic, r1 ¼ r2, thus, stress orientations are undetermined. Moreover, in a general

case, the field of stress trajectories obtained by this manner cannot further be used in elastic modelling since

Eq. (2) may not be satisfied, while it can be suitable for an inelastic material. This indicates that the known

field of stress trajectories is, in some sense, a substitution for constitutive equations.

Therefore, the recovering of elastic stress trajectories should obey the complete system of elastic equa-

tions, for instance, in the form presented by (1) and (2). This is the main feature that differs the present

study from other approaches based on pure mathematical methods alone regardless of governing equations
for the considered material. Another important element is that the proposed procedure allows for the

simultaneous determination of the maximum shear stress to be determined with minimum arbitrariness.
2. Formulation of the problem

Let X be a simply connected elastic domain bounded by a closed contour. This domain can be a sub-

domain of a bigger domain, which is not necessary simply connected and bounded. Let orientations of

principal stresses (principal directions, hk) be known in a set of discrete points zj (j ¼ 1; . . . ;N ) located

within X. It is assumed that all these data are related to only major (minor) principal stresses; therefore,

sub-index k in the notation for principal directions can be omitted further on. The general problem is
formulated as follows: find an elastic stress field within X that provides minimum deviation of calculated

principal directions from the data. This task requires minimisation of a certain functional as described in

the next section.

No formal restrictions on distributions of data points over the domain are imposed: the distribution can

be regular (e.g., data points at nodes of regular grid), uniform (e.g., random points uniformly distributed

within the domain), irregular and non-uniform or data points can form clusters. Examples are presented in

Fig. 1 and later on. In order to characterise the degree of data uniformity one can introduce a characteristic

area D ¼ SX=N , where SX is area of the domain. After that, the data density function can be obtained by
calculating the number of data points over the moving square of the size D1=2. Large variations of this
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Fig. 1. Regular (a), uniform (b), irregular and non-uniform data (c), homogenisation of clustered data (d) (casters are shaded).
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function indicate non-uniformity of the data distribution. Boundaries of clusters are associated with narrow

zones of high gradients of the data density function.

The size D1=2 can also be associated with the characteristic length of redistribution of principal directions.
As far as clusters are concerned, one can introduce another characteristic area, Dc ¼ SX=Nc, where Nc > 0 is

the number of clusters identified, Fig. 1. It is evident that Dc > D, therefore the size D1=2
c characterises the

redistribution of principal directions at a larger scale. If each cluster is counted as a single datum, then the

introduction of the second characteristic size D1=2
c can be considered as a method of data homogenisation,

i.e. clusters are absent at the larger scale as illustrated in Fig. 1d. In this case, solutions should be sought

from a smoother class due to effective reduction in data, which provides averaging the principal directions

within the clusters.

General solutions of plane elasticity can be expressed by means of two holomorphic functions UðzÞ and
WðzÞ of complex variable z 2 X, and stress components are found via the Kolosov–Muskhelishvili formulae

(Muskhelishvili, 1953)
rxx þ ryy

2
¼ UðzÞ þ UðzÞ

ryy � rxx

2
þ irxy ¼ �zU0ðzÞ þWðzÞ

ð3Þ
Hereafter the body forces are absent. This solution satisfies the equations of equilibrium and the elastic

equation acknowledging the fact that the mean stress is a harmonic function inside the domain.

By introducing the following stress functions of complex variables z ¼ xþ iy and �z ¼ x� iy
P ðz;�zÞ ¼ UðzÞ þ UðzÞ
Dðz;�zÞ ¼ �zU0ðzÞ þWðzÞ

ð4Þ
one can present the complete system of elastic equations as follows
oPðz;�zÞ
oz

¼ oDðz;�zÞ
o�z

;
o2P ðz;�zÞ
ozo�z

¼ 0 ð5Þ
Here the first equation is complex, it represents two scalar equations of equilibrium; the second one is
Laplace’s equation (2) written in variables z and �z; the differentiation with respect to complex variables is

performed in accordance with the following rule
o

oz
¼ 1

2

o

ox

�
� i

o

oy

�
;

o

o�z
¼ 1

2

o

ox

�
þ i

o

oy

�
ð6Þ
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After differentiating the first equation in (5) with respect to conjugated variable it becomes evident that the

elastic problem can be formulated in terms of the stress deviator function D ¼ Dðz;�zÞ alone as follows
1 Th

works;

such a

class o
o2Dðz;�zÞ
o�z2

¼ 0 ð7Þ
The harmonic function P does not affect principal directions; therefore, it is not included in the formulation

of the problem. It can be found by integration of (5) and hence once the stress deviator is determined, the

complete stress tensor becomes known. It should be noted however that the integration introduces an

additive real constant, that is arbitrary and cannot be determined from the data on principal directions. It is

also evident from that the equality of the imaginary part of the left-hand side of (7) to zero is simply a

consequence of two scalar equations of equilibrium; it is valid for both elastic and non-elastic domains.

The stress deviator function D ¼ Dðz;�zÞ is represented in complex exponential form as follows
Dðz;�zÞ ¼ sðz;�zÞeiaðz;�zÞ ð8Þ
where real valued functions s ¼ sðz;�zÞ and a ¼ aðz;�zÞ are modulus and argument of the stress function
D ¼ Dðz;�zÞ respectively. The modulus is associated with the maximum shear stress smax; the argument is

related to the principal directions, h, as
aðz;�zÞ ¼ �2hðz;�zÞ ð9Þ
Principal directions of different families should not be mixed to insure that the modulus is non-negative;

hereafter, h is associated with the orientation of the minor principal stresses.

Once the argument a is found one can draw the field of stress trajectories by integrating the system of

differential equations of the first order
dz
dsk

¼ ei hðz;�zÞþðk�1Þp
2ð Þ; k ¼ 1; 2 ð10Þ
Integration of (10) does not meet significant difficulties and can be performed numerically. Therefore the
field of stress trajectories can be considered as known when the argument of D is known at any point of the

domain, except singular points which will be analysed later in the subsection entitled singular points.

In the case of elasticity, the stress function D can be referred to as a bi-holomorphic function 1 in the

view of the fact that it satisfies (7), i.e. its first derivative with respect to the conjugated variable is the

holomorphic function U0ðzÞ introduced above.

Now taking into account the expression of D via the holomorphic functions one can reduce the general

mathematical formulation mentioned earlier to the problem of the determination of stress trajectories.

Given the argument of the stress deviator function D at discrete points zj (j ¼ 1; . . . ;N ) as aj, identify the
function a ¼ aðz;�zÞ that is close to aj at the points zj and represents itself as the argument of the bi-

holomorphic function Dðz;�zÞ ¼ �zU0ðzÞ þWðzÞ everywhere inside the domain X including its boundary.

It is seen further that any solution of this elastic problem virtually determines the bi-holomorphic

function D as well as the harmonic function P .
It should be noted that since not every function a ¼ aðz;�zÞ satisfies elastic equations (Mukhamediev and

Galybin, 2004), then one may expect certain difficulties solving the problem if aj are chosen arbitrary,

although an elastic solution can be found in this case as well due to the finite number of data.
is definition is different from the definition of polyholomorphic (or polyanalytic) functions accepted in some mathematical

for instance, Gakhov (1990) has introduced
Pn

k¼0ðz�zÞ
kukðzÞ as a polyanalytic function of nth order if uk are holomorphic. If

definition has been used here then the holomorphic function U0ðzÞ would have zero at the origin, which narrows the considered

f elastic problem.
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3. Method of solution

3.1. Reduction to overdetermined system of linear algebraic equations

Solution is based on the following equality that takes place for the stress function D everywhere within

the domain considered
Im e�iaðz;�zÞDðz;�zÞ
h i

¼ 0; z 2 X ð11Þ
Equality (11) is valid for both elastic and inelastic cases; it only expresses the fact that e�iaD is a real valued

function, the modulus of D. In the case of elasticity considered here, one can take into account the second

formula in (4) and rewrite (11) in terms of holomorphic functions as follows
Im e�iaðz;�zÞ �zU0ðzÞ
hn

þWðzÞ
io

¼ 0; z 2 X ð12Þ
Holomorphic functions U0ðzÞ and WðzÞ are sough further in the form of linear combinations of linearly

independent pre-assigned functions RkðzÞ that are also holomorphic in X.
WðzÞ ¼
Xn

k¼0

ckRkðzÞ; U0ðzÞ ¼
Xn�1

k¼0

ckþnþ1RkðzÞ ð13Þ
Constants ck are unknown and should be determined while solving the problem, after which the argument

of the bi-holomorphic function becomes known as well as the function itself.

Note that in (13) the combinations for holomorphic functions may have different number of terms. It is

assumed however that the representation for U0ðzÞ has one term less than that for WðzÞ, which is not

compulsory but it will provide the same number of terms in both stress functions P and D. It also should be

noted that R0ðzÞ ¼ 1 is used further, regardless of the choice of the other function RkðzÞ.
Substitution of (13) into (4) leads to the following form for the bi-holomorphic function
Dðz;�zÞ ¼ �zU0ðzÞ þWðzÞ ¼
X2n
k¼0

ckFkðz;�zÞ; Fkðz;�zÞ ¼
RkðzÞ; 06 k6 n
�zRk�n�1ðzÞ; n < k6 2n

�
ð14Þ
Eq. (14) being substituted into (12) results in the following functional equation
Im
X2n
k¼0

ck e�iaðz;�zÞFkðz;�zÞ ¼ 0; z 2 X ð15Þ
Eq. (15) is further reduced to a system of linear algebraic equations with respect to unknown constants ck.
Since the function a is known at the points zj one obtains by discretization of (15) the following system of N
complex equations for the determination of 2nþ 1 complex constants
Im
X2n
k¼0

e�iajFkðzj;�zjÞck ¼ 0; j ¼ 1; . . . ;N ð16Þ
Eq. (16) is a homogeneous one, thus at least one extra condition is required in order to find its non-trivial

solution. As it is evident from formulae (11)–(16), the multiplication of (16) by any real constant does not

violate this system, which means that any solution satisfying (16) can be normalised by a real constant. This

constant can be chosen from the condition that the average modulus of D over the domain is unity. Since
jDj ¼ e�iaD, the extra equation assumes the form
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XN
j¼1

X2n
k¼0

e�iajFkðzj;�zjÞck ¼ N ð17Þ
It is convenient to rewrite system (16) and (17) in a matrix form by presenting the complex constants as

ck ¼ Xk þ iX2nþkþ1 (and hence introducing a vector X of 4nþ 3 real unknowns) and separating the real and
imaginary parts of complex equations, which leads to
AX ¼ B ð18Þ
where A is ðN þ 1Þ � ð4nþ 3Þ matrix of the system with the coefficients Ak;j defined below; X is (4nþ 3)

vector of real unknowns Xk; and B is (N þ 1) vector all components of which are zero except of the last one

that is equal to N due to (17)
Aj;k ¼
Im e�iajFkðzj;�zjÞ

h i
; 06 k6 2n

Im i e�iajFk�2n�1ðzj;�zjÞ
h i

; 2n < k6 4nþ 1
;

8><
>: j ¼ 1; . . . ;N

ANþ1;k ¼
PN

j¼1 e
�iajFkðzj;�zjÞ; 06 k6 2nPN

j¼1 i e
�iajFk�2n�1ðzj;�zjÞ; 2n < k6 4nþ 1

( ð19Þ
A redundant system (18) is solved further by the least squares method provided that N P 4nþ 2. However,

this method alone is not able to ensure stability of the obtained solution caused, for instance, by the

possible ill-posedness of the problem.
4. Solution of the linear system

It should be pointed out that the right-hand side of system (18), vector B ¼ ð0; . . . ; 0;NÞT, is known

exactly, while the coefficients of the matrix A depend on data quality. This situation is different from that

specific for ill-posed problems of fitting, firstly because stability of solutions cannot be attributed to errors

in the right-hand side and secondly because the matrix A is not necessary ill-conditioned. In the latter case,
there is no need to apply any regularisation procedures common for ill-posed problems, as those presented

in Tikhonov and Arsenin (1977). Therefore, it is proposed to control the condition number of matrix A

during solving the system, which gives the indication whether the matrix is ill-conditioned or not.

There are two main sources that can make the matrix A to be ill-conditioned. First of all Eq. (17) does

not guarantee that the rank of the system (18) is equal to 4nþ 3 even if N P 4nþ 2. This special case is

analysed in the next subsection. In addition, stress orientations expressed by the angles aj are subjected to

experimental errors that, in principle, can bring incorrectness into initially well-posed problem.

The method employed here eliminates both these sources automatically. It is based on the singular value
decomposition method (see, e.g., Golub and Loan, 1989), which allows for easy control of the condition

number, CN, defined as the ratio of largest and smallest singular values. If the condition number is greater

than a specified critical value, CN�, then the matrix A in (18) is replaced by a close matrix A0 which rank is

less that rankðAÞ. The matrix A0 is close to A in the sense that their greatest singular values coincide. This

idea is widely used in image processing in order to reduce amount of data stored or transmitted (e.g.,

Andrews and Patterson, 1975; Forsythe et al., 1977; Kahar et al., 1989). Galybin (2002) has applied this

approach for the regularisation of ill-posed problems of the identification of cohesive stresses in the process

zone ahead of the crack tip and recovering of softening curves, in which matrix A was independent of input
data. Specific details are presented below.
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Firstly the singular value decomposition of A (ðN þ 1Þ � ð4nþ 3Þ) is found in the form A ¼ UDVT,

where U (ðN þ 1Þ � ðN þ 1Þ) and V (ð4nþ 3Þ � ð4nþ 3Þ) are orthogonal matrices and D (ðN þ 1Þ�
ð4nþ 3Þ) is a diagonal matrix formed by the singular values, dj P 0, placed in descending order,

d1 P d2 P � � � P d4nþ3. Secondly the matrix D is truncated by replacing least singular values by zeroes,
which produces a diagonal matrix D0 having rank K: D0 ¼ diagfd1; d2; . . . ; dK ; 0 . . . 0g Then the matrix A0

(ðN þ 1Þ � ð4nþ 3Þ) of the rank K is determined as A0 ¼ UD0VT. Finally, the system in (18) is replaced by

the system A0X ¼ B, solution of which is given by
X ¼ VD00UTB ð20Þ
Here D00 is the diagonal matrix ð4nþ 3Þ � ðN þ 1Þ of the rank K 6 nþ 3: D00 ¼ diag d�1
1 ; d�1

2 ;
�

. . . ; d�1
K ; 0; . . . ; 0g.

In the case CN 6 CN� no truncation of matrix D is performed, thus Eq. (20) provides exact solutions of

initial system (18).

4.1. Harmonic argument

It follows from (4) and (8) that the argument a can be decomposed into the following sum
aðz;�zÞ ¼ arg U0ðzÞ
� �

þ arg �z
�

þ WðzÞ
U0ðzÞ

�
ð21Þ
The first term in the left-hand side of (21) is a harmonic function while the second term is the argument of a

complex-valued harmonic function that, in general, it is not a holomorphic one. The total argument a is

harmonic if the second term in (21) is omitted or constant. For instance, in the case of normally loaded half-
plane or crack where WðzÞ ¼ �zU0ðzÞ, it is equal to �p=2. Circular boundaries present other examples that

lead to the harmonic argument of the bi-holomorphic function. The general expression for this function can

be taken in the form
Dðz;�zÞ ¼ a0
�

þ a1zþ �a1�zþ a2z�z
�
vðzÞ; Imða0Þ ¼ Imða2Þ ¼ 0 ð22Þ
where vðzÞ is a holomorphic function. It should be noted the term in parenthesis in the right-hand side of

Eq. (22) is a real valued function, thus the necessary condition is obvious; for the rigorous proof of suf-

ficiency of the representation (22) see Mukhamediev and Galybin (2004).

Eq. (22) also shows that there are four real constants ða0;Reða1Þ; Imða1Þ; a2Þ that do not affect stress

trajectories in this special case. They cannot be determined by solving system (18), which manifests in the

decrease of rankðAÞ. For instance, if vðzÞ ¼ z and aj are known exactly, rankðAÞ decreases by three units
provided that the average modulus of D over the domain is unity, which eliminates one independent

constant.

For continuous data, the direct substitution of aðz;�zÞ into Laplace’s equation verifies if argument is

harmonic or not. With some tolerance, this can also be done for exactly known discrete data. However, the

presence of experimental errors makes it impossible to distinguish a priori the case of harmonic and non-

harmonic arguments. In applications, it can be recommended to seek solution from the class of non-har-

monic arguments and check afterwards if the result indicates the harmonic argument. This can be achieved,

for instance, by verifying a posteriori the following relationships between complex potentials that follow
from (22)
ð�a1 þ a2zÞU0ðzÞ � ða0 þ a1zÞWðzÞ ¼ 0 ð23Þ
However, if there is no clear indication in data then, in principle, these two cases should be considered
separately, followed by comparison of the results in order to decide between the two variants.
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System (18) can be substantially simplified for the case (22). Thus, by substituting vðzÞ ¼ jvðzÞjei arg½vðzÞ�
into (22), taking logarithm of both parts and separating the imaginary part one finds
Fig. 2.

(B-type
elastic
ln vðzÞ � ln vðzÞ ¼ 2iaðz;�zÞ; aðz;�zÞ ¼ arg½vðzÞ� ð24Þ
Further, a linear system could be formed as described above, in which the only holomorphic function has to
be determined. Moreover, the matrix of this system would be independent of a, thus the errors can only be

attributed to the right-hand side of the system. This probably would be the best way to obtain a solution in

the special case of harmonic argument, however it has been discarded because no singular points can be

detected by this approximation as explained below.
4.2. Singular points

Singular points in stress trajectories can be separated into two classes. The first class is referred to the

usually adopted meaning for singular points where stresses are discontinuous. The second class is referred
to in photoelasticity as isotropic points at which principal stresses are equal to each other hence no

principal directions exist. It should be noted that trajectories themselves can represent a continuous set of

isotropic points, but in this case the boundary coincides with a trajectory as, for instance, in the case of a

non-loaded isotropic plane having a crack which surfaces are subjected by normal loading. Hence, such

cases do not present any difficulties in identification of singular points. Positions of singular points of the

first class are also obvious for the case of notches, concentrated forces acting on the boundary or points of

discontinuity in boundary conditions (concentrated forces and/or couples that act within the domain are

exceptional). Therefore, the only isolated singular points of the second class (isotropic points) have to be
identified in the field of stress trajectories being reconstructed from the discrete data.

Two types of isotropic points of the first order are usually observed in photoelasticity, although the

existence of isotropic points of higher order is theoretically possible (e.g., Kuske and Robertson, 1974).

These points can be classified in accordance with the asymptotic behaviour of the stress deviator function

(Karakin and Mukhamediev, 1994) in the vicinity of its zero. Assuming this zero at the origin one has the

following expansion
Dðz;�zÞ ¼ A�zþ Bzþ � � � ð25Þ
If jAj > jBj one has singular point of A-type and if jAj < jBj then it is of B-type. Both these types may appear
simultaneously within the considered domain as shown in Fig. 2 which represents a fragment of the
Singular points in the field of stress trajectories: A––interlocking isotropic point (A-type), B––non-interlocking isotropic point

), C––singular point under concentrated load. Fragment of trajectory field obtained in the experiment of bending of photo-

beam, after Frocht (1941).
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trajectory field obtained in a photoelastic beam under four point bending load (after Frocht, 1941). Note

also the singular point C of the first class that corresponds to concentrated load on the boundary.

The following property of singular points should be pointed out. Let cA and cB be closed contours

encompassing isotropic points of the A and B-type respectively and let no other singular points within
these contours be present Then it is evident that principal directions gain an increment of �p after the

complete traverse of these contours respectively. Therefore the angle a, argument of D, gains the incre-

ment �2ð�pÞ.
This property prohibits the application of Eq. (24) for the domains with isotropic points even if the

argument is a harmonic function. This is due to the fact that the principle of argument for holomorphic

functions (e.g., Gakhov, 1990) requires the compensation of the increment in the argument by introducing

poles or zeroes within the contour. However, they are not present there. In principle, in the vicinity of an

isotropic point, z0, one might extract the factors (z� z0) or (�z� �z0) from the function Dðz;�zÞ with the aim to
make the rest holomorphic. However, this would require a priory identification of the isotropic points that

is a separate problem. The approach based on (13) and (14) is free from these shortcomings and it allows for

simultaneous recovering the isotropic point of the both types.
5. Model examples

5.1. Synthetic example: recovering of trajectories with singular points

This subsection presents an artificial example in which principal directions are modelled by a certain

stress function Didealðz;�zÞ that is analytically defined in square domain Xs ¼ fjxj6 1; jyj6 1g. The stress

function is calculated at a number of points to produce discrete data followed by the introduction of errors

at each data point in order to model experimental observations. The scope of this section is to investigate

the accuracy in the reconstruction of stress trajectories and stress functions as well as the possibility of
recovering the isotropic points of both types mentioned above. For this purpose, the bi-holomorphic

function D has been taken in the following simple form
Didealðz;�zÞ ¼ C0ðz� C1Þ �z
�

� C2

�
ð26Þ
where C1 and C2 are located within Xs. From the comparison of (26) and (25) it is evident that these points

are isotropic points of B and A-types correspondingly.
Particular form for the ideal mean stress is taken in the form
Pidealðz;�zÞ ¼ Re½C0zðz� 2C1Þ� ð27Þ
The discrete data are found from (26) as follows
hj ¼ �1
2
arg Dideal Zj; Zj

� �	 

þ gj ð28Þ
Data points Zj (j ¼ 1; . . . ;N ) have been introduced either regularly or randomly, but in the latter case they

also have been uniformly distributed within the square Xs and generated by MathCAD 6 PLUS built-in

procedure rndðxÞ. The errors gj have been generated by the procedure rnornðN ;mean; stdevÞ as random

numbers normally distributed with zero mean and given standard deviation. The number of data points

varies depending on the number of unknown coefficients in expansion (13) remaining N ¼ 10n in all cal-
culations performed. Complex potentials U0ðzÞ and WðzÞ in (13) have been sought as polynomials of n and

n� 1 degrees respectively, i.e. RkðzÞ ¼ zk (k ¼ 0; . . . ; n).
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The following characteristics have been used for the comparison of ideal and recovered stress functions:

• Dislocations of recovered singular points from ideal positions qk ¼ jCk � z�k j, k ¼ 1; 2, where z�k are two

different roots of the equation Drevðz;�zÞ ¼ 0 found within the square Xs; they are numbered with respect
to the closest singular point Ck.

• Deviation of ideal and recovered stress functions calculated as standard deviations of three arrays DM,

DA and DP which elements represent the differences of ideal and recovered moduli DM and arguments

DA of the stress deviator and mean stresses DP respectively at a set of points zm (m ¼ 1 . . .NdÞ regularly
distributed within the square Xs, i.e. DMm ¼ jDidealðzm;�zmÞj � jDrecðzm;�zmÞj, DAm ¼ argðDidealðzm;�zmÞÞ�
argðDrecðzm;�zmÞÞ and DPm ¼ jPidealðzm;�zmÞj � jPrecðzm;�zmÞj; note that the nodes Zj and the points zm are

different.

In order to illustrate the results of reconstructions of the stress field an example is presented below in

which the following parameters have been used C1 ¼ 0:5þ 0:5i, C2 ¼ �0:5� 0:3i, n ¼ 4, N ¼ 40,

Nd ¼ 100. The errors introduced in this example were within the range ()5.8�, 12.2�) with the standard

deviation of stdev ¼ 5�. Fig. 3 presents a pattern of one family of recovered stress trajectories, i.e. the

angle h ¼ �0:5 argðDrecðz;�zÞÞ, and positions of singular points that are shown by symbols. The recovered

trajectories are very close to the ideal ones; they are not shown in the figure, stdevðDAÞ ¼ 23:3� in this

example. The following dislocations of the recovered singular points from the ideal ones have been found:

q1 ¼ 0:071, q2 ¼ 0:04. Figs. 4 and 5 represent contour maps of ideal and recovered maximum shear
stresses sðz;�zÞ and mean stresses, P ðz;�zÞ. The latter is obtained from Drecðz;�zÞ by integrating the equations

of equilibrium and omitting the additive constant (for the sake of comparison with (27), where this

constant is not present). Both figures illustrate good agreement of ideal and recovered characteristics of

the stress fields; in this example, stdevðDMÞ ¼ 0:138, stdevðDPÞ ¼ 0:15 and means of these arrays are zero,

which is provided by the proper choice of the real multiplicative constant in the recovered solution,

Drecðz;�zÞ.
Two other types of approximating functions Rk have also been examined: polynomials with random

roots, RkðzÞ ¼
Qk

j¼0ðz� cjÞj, (cj 2 Xs), and Legendre polynomials, RkðzÞ ¼ PkðzÞ, PkðzÞ ¼ 1
2nn!

dn

dxn ðx2 � 1Þn
that have roots on the real axis. No essential difference in results has been noticed.
Fig. 3. Stress trajectories recovered from (28); circles are ideal positions of singular points, squares are recovered positions of singular

points.
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5.2. Elastic disk: harmonic argument

This synthetic example illustrates the approach to the reconstruction of stress functions for the case of

harmonic argument. The solution is sought in the class of harmonic arguments only regardless of errors
introduced.

Let an elastic disk of unit radius be loaded along a diameter by two equal and opposite concentrated

forces, p, then the bi-holomorphic function can be obtained from complex potentials presented by Mus-

khelishvili (1953) as follows
Didealðz;�zÞ ¼
2p
p

1� z�z

ð1� z2Þ2
ð29Þ
Here the real axis coincides with the direction of the applied forces.

It is evident from (29) that the argument of Dideal is a harmonic function since the denominator of the
fraction in (29) is holomorphic while its numerator is real valued. Therefore, any particular solution,

Drecðz;�zÞ, reconstructed from the exactly known discrete data is not capable to recover the numerator of the
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fraction in (29), which eventually leads to the general solution in the form (22) that contains up to four real

constants.

The domain, Xh, analysed further is the square inscribed into the unite circle, i.e. Xh ¼
fz : jReðzÞj < 2�1=2; jImðzÞj < 2�1=2g. Contour map of maximum shear stresses and stress trajectories ob-
tained from (29) within Xh are presented in Fig. 6 for p ¼ 1. Further, they referred to as ideal modulus and

ideal stress trajectories correspondingly The discrete data are found from (29) by formula (28) in which the

nodes Zj (j ¼ 1; . . . ;N ) have been introduced regularly within the square, Zj 2 Xh; in examples below

N ¼ 100. Noise, gj, is modelled as in the previous subsection.

Despite the absence of singular points in the trajectory field (Fig. 6), no special programme has been

developed for this case: solution is still sought in the form (14) by putting Fkðz;�zÞ ¼ 0 for all k > n. This
leads to the reduction of the dimension of the linear system to ðN þ 1Þ � ð2nþ 3Þ linear algebraic equa-

tions, which is achieved by setting the critical condition number CN� ¼ 105 as described above. As the
consequence of this, one still has the same restriction on the number of approximating functions,

4nþ 26N , i.e. n6 24 in this case.

Similarly to the previous subsection, three types of Rk have been examined: polynomials, polynomials

with random roots and Legendre polynomials. No essential difference in results obtained with the use of

different RkðzÞ has been noticed while n6 16 regardless of whether the noise is present or not. However, the

analysis has shown that the condition number, CN, increases with the increasing number of approximation

functions (parameter n). It has been found that for polynomials the increase is less than for the other two

types used, for instance, for n ¼ 12: CN¼ 6 · 105 for Legendre polynomials, CN varies in the range (0.1–
33) · 103 for different polynomials with random roots, while for polynomials CN¼ 51. Therefore, RkðzÞ ¼ zk

are used in this example, which provides better stability in recovering the stress function Drec.

The result of fitting is obtained as a polynomial function vrecðzÞ that is holomorphic in finite domain Xh.

The arguments of vrecðzÞ and Didealðz;�zÞ in (29) are close to each other due to fitting, while their moduli are

different because they are moduli of holomorphic and bi-holomorphic functions respectively. As it has been

mentioned above, the general solution depends on four arbitrary real constants that cannot be determined

from the data alone. The approximate solution that corresponds to the ideal one can be considered as a

particular solution by specifying the coefficients a0, Reða1Þ, Imða1Þ, a2 in (22). For the case when a1 ¼ 0 and
a2 ¼ 0 one obtains a solution by means of holomorphic function a0vrecðzÞ. The modulus of this function is

presented in Fig. 7a that is different from the ideal one shown in Fig. 6 (no noise was introduced). When

coefficients are chosen as a1 ¼ 0, a0 ¼ a2 ¼ a, in order to address the fact that the discrete data were formed

from a bi-holomorphic function (29), then solution assumes the form
Fig. 6. Ideal contour map of modulus (left) and ideal trajectories (right) within the square Xh.
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Fig. 7. Moduli, n ¼ 12: without correction (left) with correction (right).
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Drecðz;�zÞ ¼ að1� z�zÞvrecðzÞ; vrecðzÞ ¼
Xn

k¼0

ckzk ð30Þ
Contour map of jDrecðz;�zÞj is shown in Fig. 7b for the case when no noise was added to the discrete data.

The coefficient a is chosen such that meanðDidealÞ ¼ meanðDrecÞ in Xh, which provides better visual

assessment of ideal and recovered contour maps of maximum principal stresses.
The analysis of different sets of noises that disturbs the data has been performed. It shows that the

increase in the degree of polynomials from n ¼ 2 to 12 leads to the better agreement between recovered and

ideal characteristics, i.e. stress trajectories, maximum shear stresses and mean stresses. Further increase

does not lead to the improvement of the results, which is explained by the loss of redundancy.

5.3. An example from photoelasticity

The field of trajectories depicted in Fig. 2 has been used to prepare discrete data for the reconstruction of

stress trajectories and maximum shear stresses. For this purpose, the coordinates of intersection points of

two families of mutually orthogonal trajectories have been digitised by software Surfer directly from the

screen. After that, the principal directions have been obtained as the orientations of spans connecting the

intersection points lying on the trajectories presented by solid lines. Therefore, two sources of errors have

been introduced: by digitising procedure and by approximation of tangents by spans.
The domain considered represents itself the rectangle jxj < 1, jyj < 1:057. The input data is presented in

Fig. 8a where principal directions are shown by 73 segments. The data is non-uniform and the presence of

isotropic points is not evident from the figure.

Fig. 8b presents the reconstructed stress trajectories and singular points by the procedure described

above in the previous sections for n ¼ 4. The functions RkðzÞ used were as follows
RkðzÞ ¼ ðz� zpoleÞ�2zk; zpole ¼ 0:2þ 1:4i ð31Þ

The weight function in (31) has been chosen in order to address the existence of singular point C where the

concentrated force is applied to the boundary, see Fig. 2. Although the point of application of this force is

known exactly, here the position of this point has been chosen approximately in order to test whether this

affects the results of the reconstruction.

Comparison of Figs. 8b and 2 demonstrate satisfactory agreement of both the singular points and stress

trajectories obtained by photoelastic methods and recovered by the proposed procedure. It has been found
that the example presented is not very sensitive to the accurate account for the position of singular points ofC-



Fig. 8. Recovering of elastic stress trajectories and isotropic points for n ¼ 4: (a) input data 73 points, no singular points specified,

(b) recovered trajectories and singular points A and B.
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type. However, the introduction of the weight function in (31) is beneficial and allows one to reconstruct stress

trajectories more accurately than in the case without the weight function. It should be noted that the increase

of the number of approximating functions used in reconstruction without the weight improves results, thus for

n ¼ 10 stress trajectories are somewhat similar to those presented in Fig. 8b. However, further increase of n
leads to the substantial loss of redundancy, which affects the results and does not lead to improvement.

Maximum shear stresses are presented in Fig. 9. Fig. 9a shows a fragment of the stress pattern observed

in photoelasticity. This fragment has been extracted from a complete pattern presented in Frocht (1941); it

corresponds to the area for which the reconstruction of stress trajectories has been performed, i.e. to the
region shown in Fig. 2. Fig. 9b illustrates the results of reconstruction of the modulus of the stress function

D. Contour lines presented in this figure have been drawn with the intervals of 0.15 chosen to make the

black areas in the middles of both figures be of similar sizes.
5.4. Geophysical application: Australian stress field

This subsection presents preliminary results of the investigation of the Australian stress field. Currently

the database of stress orientations (Reinecker et al., 2003) has more than 13,600 data points around the
Fig. 9. Maximum shear stresses: (a) fragment of a stress pattern (extracted from Frocht, 1941); (b) contour map of recovered modulus

of the stress function D.
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globe at which orientations of principal stresses have been measured by a number of special methods. The

data is of different quality ranging from E (low) to A (high). In this paper we use the data located within the

region ()40� S, )10� S) and (110�W, 155�W) with the quality A, B and C (269 points in total). It should be

noted that the data are non-uniform within the continent, which present an obstacle for the analysis. There
are few clusters where the data are dense; they are shown in Fig. 10 by black rectangles. These clusters have

been obtained by plotting a density function that was found by calculating the number of data points over

the moving window of approximately 2� · 2� in size with the step of 0.65�. This window size is chosen as the

square root of the ratio of the area of the region and the number of data points; the step is three times less

then the window size. It has been assumed that data form a cluster if five or more points are located within

the window. This analysis indicates that the number of functions RkðzÞ in approximation (13) should not be

very large. Consequently, if each cluster in Fig. 10 was considered as a single datum then it follows from

N > 4nþ 3 that n ¼ 2 would have been used in the analysis. Coblentz et al. (1995) employed this way to
reduce the data in their elastic finite-element modelling of Australian stress field, which also required the

averaging of stress orientations over the marked areas. This procedure, however, strongly depends on the

method applied; therefore in contrast to Coblentz et al. (1995) no averaging of data within the clusters has

been performed.
Fig. 10. Data clusters (five or more measurements available) within the investigated region.

Fig. 11. Recovered trajectories and singular point (symbol) in Australia, Ndata ¼ 269, n ¼ 2, data is presented by black segments.
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In the present analysis polynomials were used as approximating functions, RkðzÞ ¼ zk, their degrees were
varied from n ¼ 1 to 10. Fig. 11 illustrates the trajectory field obtained for the Australian continent in the

case when n ¼ 2.

In all cases considered, the presence of a singular point of the B-type within the continent has been
revealed; it is shown in Fig. 11 by a small black rhombus. Position of this point slightly varies within the

region ()28� S, )25� S) and (135� W, 139� W) for 1 < n6 10 ()31� S, 144� W for n ¼ 1). It should be noted

that for n > 4 other singular points appears near the boundaries of the considered domain, however they

are not stable, which indicates that these are not real but likely caused by inconsistence of clustered data

and degree of polynomials.

5.5. Closure

Examples presented in the previous section demonstrate that elastic stress fields can be recovered with

satisfactory accuracy from the discrete data on principal directions. It is proposed to fit the data to the
calculated principal directions obtained from the general solution well known in plane elasticity. This

approach allows one to undertake a revision of the methods used in photoelasticity in the problem of the

separation of principal stresses from the stress trajectories. The separation can be performed without

the integration of the equilibrium equations as currently used. The application of the proposed technique to

the geophysical problem of the reconstruction of tectonic stresses in the earth’s crust creates new per-

spectives in the analysis of geophysical data currently available.
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