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Abstract

The problem considered in this paper deals with reconstruction of stress fields in a plane elastic domain from discrete
data on stress orientations. The problem is reduced to the determination of unknown coefficients in linear combinations
of holomorphic functions used for the representation of complex potentials in plane elasticity. The coefficients are
found by fitting the data to the calculated principal directions. This leads to an overdetermined system of linear
algebraic equations which elements are subjected to experimental errors. The system is homogeneous; therefore, the
coefficients cannot be determined uniquely. However, it allows for the unique reconstruction of stress trajectories. The
determination of maximum shear stresses is non-unique: it can be multiplied by (i) an arbitrary real positive constant if
principal directions are non-harmonic function of spatial coordinates; or (ii) a real valued positively defined bi-holo-
morphic function that depends on four real constants if principal directions are harmonic. The determination of the
mean stresses is performed by integration, which introduces another real additive constant into the complete solution.

The proposed technique is capable of identification of singular (isotropic) points in the field of stress trajectories.
This is illustrated in examples that use for the reconstruction either synthetic or real data from photoelasticity and
geophysics.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

In geophysics, the discrete data on principal directions are used to compose stress trajectories (e.g.,
Hansen and Mount, 1990) or as the input for modelling tectonic stress fields in the earth’s crust (e.g.,
Coblentz et al., 1995). Stress orientations can be specified by introducing so called (Timoshenko and
Goodier, 1970) principal directions of a plane symmetric stress tensor as the angles of inclination of
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principal stress axes to any reference direction. Continuous fields of principal directions can directly be used
for the determination of elastic stress fields, for instance, in photoelasticity this is achieved by integration of
the equation of equilibrium (e.g., Frocht, 1941). This paper presents an alternative approach for the
determination of elastic stresses in plane elasticity. It does not require integration and uses the principal
directions at discrete points to uniquely determine trajectories of elastic stresses while other characteristics
of the stress field are found with minimum arbitrariness.

The concept of stress trajectories comes from photoelasticity, therefore one can adopt the following
definition due to Frocht (1941): stress trajectories or isostatics are curves the tangents to which represent the
directions of one of the principal stresses at the points of tangency. Since there exist two mutually
orthogonal principal directions at each point, stress trajectories can be viewed as curvilinear coordinate
lines. This concept is widely used in photoelasticity for separation of principal stresses g; and ¢, from the
Lame—Maxwell equations of equilibrium
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Here s; are arc lengths along stress trajectories, p, = (30,/0s;)”" are radii of curvature of the stress tra-
jectories, 0, are principal directions, subscript £ = 1,2 is introduced in order to distinguish families of stress
trajectories.

System (1) constitutes a complete system of partial differential equations for the determination of two
principal stresses provided that the stress trajectories are known. This system is of hyperbolic type with the
stress trajectories being the characteristics of it, thus either Cauchy or Goursat boundary value problems
may be posed for the determination of principal stresses (e.g., Mukhamediev, 1991). It should be noted that
in photoelasticity the maximum shear stress, Tm,x = |01 — 02|/2, is also observed; therefore, in principle, any
one of these equations can be used as, for instance, in the classical Filon’s method. The problem of sep-
aration of principal stresses is discussed in detail in Frocht (1941), Coker and Filon (1957), Alexandrov and
Akhmetzyanov (1973), Kuske and Robertson (1974) and other monographs on the photoelastic method. In
any case, the magnitudes of boundary stresses have to be engaged in the separation of principal stresses by
integration of system (1).

It is evident that no constitutive relationships are required for solving system (1). Therefore, solutions
found from this system alone can be attributed to any material regardless of its mechanical behaviour. In
photoelasticity, it is proposed (Alexandrov and Akhmetzyanov, 1973; Kuske and Robertson, 1974) to
verify the results obtained after integration of (1) by satisfying some differential equations of the second
order obtained by manipulations with the equations of equilibrium and the compatibility conditions. The
latter in the case of the absence of body forces can be replaced by Laplace’s equation

A(O'1+O'2):0 (2)

Therefore in photoelasticity, the equation responsible for constitutive behaviour is used in order to check
the accuracy of the results obtained when separating principal stresses rather than the third equation im-
posed on two unknown principal stresses.

The complete system of equations (1) and (2) represents an ill-posed problem provided that stress ori-
entations are known within elastic regions. Galybin and Mukhamediev (1999) showed that given stress
orientations and curvatures of stress trajectories on the boundary, one faces a non-classical boundary value
problem of plane elasticity that can have a certain number of linearly independent solutions or be
unsolvable. This depends upon the index, 2K, of the problem that can be defined as the increment gained by
any one of two principal directions after the complete counterclockwise traverse of the boundary of a
simply connected domain. The increment is calculated in radians, divided by =, it is an integer or zero. In
particular, it was found that for 2K < —1 no solutions exist, for 2K = —1 there exist a unique solution and
four solutions exist for 2K = 0. This analysis supports the fact that the knowledge of stress trajectories
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within the domain is redundant and leads to an ill-posed problem. It will be seen later that the application
of proper methods for solving ill-posed problems is required; however, there is no need to formulate a
boundary value problem in terms of stresses in order to solve the system (1) and (2).

Although this approach might be of less significance as far as photoelasticity is concerned (since it is
already known that the model is elastic and (2) should be satisfied), it can be vital for other applications of
the stress trajectory concept especially if stress orientations are known at discrete points rather than
continuously. In geophysics, for example, the problem of determination of stress fields from known ori-
entations of principal stresses is of great significance. Experimental data on in situ stresses are obtained by
direct instrumental measurements such as overcoring or hydraulic fracturing as well as retrieved from the
analysis of natural stress indicators as focal mechanisms of earthquakes, alignments of geological bodies,
geometry and kinematics of fracture structures in the crust, stress induced borehole “breakouts™, etc.
Reliable data on the stresses in the earth’s crust have been summarized and incorporated into the world
stress database (Reinecker et al., 2003). These observations indicate that two of three principal stresses in
the upper earth’s crust are usually sub-horizontal (e.g., Zoback et al., 1989). Thus, 2D elastic problems are
frequently employed in modelling of regional stress states (e.g., Coblentz et al., 1995).

In contrast to the photoelastic method that provides a continuous field of stress trajectories with certain
accuracy, the orientations of stresses in the earth’s crust are known at some discrete points with much worse
accuracy due to various reasons. If data are dense enough, then a smooth continuous field of stress tra-
jectories can be compiled by statistical and interpolation methods (e.g., Hansen and Mount, 1990; Lee and
Angelier, 1994). However, it should also be noted that the presence of isolated singular points significantly
complicates the problem. At such points (also known as isotropic points in photoelasticity, e.g., Frocht,
1941) stresses are hydrostatic, o; = a,, thus, stress orientations are undetermined. Moreover, in a general
case, the field of stress trajectories obtained by this manner cannot further be used in elastic modelling since
Eq. (2) may not be satisfied, while it can be suitable for an inelastic material. This indicates that the known
field of stress trajectories is, in some sense, a substitution for constitutive equations.

Therefore, the recovering of elastic stress trajectories should obey the complete system of elastic equa-
tions, for instance, in the form presented by (1) and (2). This is the main feature that differs the present
study from other approaches based on pure mathematical methods alone regardless of governing equations
for the considered material. Another important element is that the proposed procedure allows for the
simultaneous determination of the maximum shear stress to be determined with minimum arbitrariness.

2. Formulation of the problem

Let Q be a simply connected elastic domain bounded by a closed contour. This domain can be a sub-
domain of a bigger domain, which is not necessary simply connected and bounded. Let orientations of
principal stresses (principal directions, 0;) be known in a set of discrete points z; (j =1,...,N) located
within Q. It is assumed that all these data are related to only major (minor) principal stresses; therefore,
sub-index & in the notation for principal directions can be omitted further on. The general problem is
formulated as follows: find an elastic stress field within Q that provides minimum deviation of calculated
principal directions from the data. This task requires minimisation of a certain functional as described in
the next section.

No formal restrictions on distributions of data points over the domain are imposed: the distribution can
be regular (e.g., data points at nodes of regular grid), uniform (e.g., random points uniformly distributed
within the domain), irregular and non-uniform or data points can form clusters. Examples are presented in
Fig. 1 and later on. In order to characterise the degree of data uniformity one can introduce a characteristic
area A4 = So/N, where Sq is area of the domain. After that, the data density function can be obtained by
calculating the number of data points over the moving square of the size 4'/%. Large variations of this
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Fig. 1. Regular (a), uniform (b), irregular and non-uniform data (c), homogenisation of clustered data (d) (casters are shaded).

N

function indicate non-uniformity of the data distribution. Boundaries of clusters are associated with narrow
zones of high gradients of the data density function.

The size 4'/? can also be associated with the characteristic length of redistribution of principal directions.
As far as clusters are concerned, one can introduce another characteristic area, 4. = Sq/N,, where N, > 0 is
the number of clusters identified, Fig. 1. It is evident that A, > 4, therefore the size Ai/ 2 characterises the
redistribution of principal directions at a larger scale. If each cluster is counted as a single datum, then the
introduction of the second characteristic size 4!/* can be considered as a method of data homogenisation,
i.e. clusters are absent at the larger scale as illustrated in Fig. 1d. In this case, solutions should be sought
from a smoother class due to effective reduction in data, which provides averaging the principal directions
within the clusters.

General solutions of plane elasticity can be expressed by means of two holomorphic functions &(z) and
¥(z) of complex variable z € ©, and stress components are found via the Kolosov—Muskhelishvili formulae
(Muskhelishvili, 1953)

2T ) + 9()
Oy — G ., (3)
~ 5 +i0,, =z0'(2) + P(z)

Hereafter the body forces are absent. This solution satisfies the equations of equilibrium and the elastic
equation acknowledging the fact that the mean stress is a harmonic function inside the domain.
By introducing the following stress functions of complex variables z =x + iy and z = x — iy

P(z,Z) = ®(z) + @(2) (4)
D(z,z) =z (z) + ¥(z)

one can present the complete system of elastic equations as follows
OP(z,z) 0D(z,Z) 0*P(z,Z) 0 (5)
oz oz 0zoz
Here the first equation is complex, it represents two scalar equations of equilibrium; the second one is

Laplace’s equation (2) written in variables z and z; the differentiation with respect to complex variables is
performed in accordance with the following rule

o _1(e_ ey 2_1(0 .0 "
oz 2\x oy)’ oz 2\ox Oy
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After differentiating the first equation in (5) with respect to conjugated variable it becomes evident that the
elastic problem can be formulated in terms of the stress deviator function D = D(z,z) alone as follows
5 _
0 DEZ7Z) —0 )
0z2
The harmonic function P does not affect principal directions; therefore, it is not included in the formulation
of the problem. It can be found by integration of (5) and hence once the stress deviator is determined, the
complete stress tensor becomes known. It should be noted however that the integration introduces an
additive real constant, that is arbitrary and cannot be determined from the data on principal directions. It is
also evident from that the equality of the imaginary part of the left-hand side of (7) to zero is simply a
consequence of two scalar equations of equilibrium; it is valid for both elastic and non-elastic domains.
The stress deviator function D = D(z,Z) is represented in complex exponential form as follows

D(z,2) = 1(z,2) €7 (8)

where real valued functions t© = 7(z,z) and o = «(z,Z) are modulus and argument of the stress function
D = D(z,z) respectively. The modulus is associated with the maximum shear stress 7,.x; the argument is
related to the principal directions, 6, as

o(z,2) = —20(z,2) 9)

Principal directions of different families should not be mixed to insure that the modulus is non-negative;
hereafter, 0 is associated with the orientation of the minor principal stresses.

Once the argument « is found one can draw the field of stress trajectories by integrating the system of
differential equations of the first order

j—; = (P 018) =12 (10)
Integration of (10) does not meet significant difficulties and can be performed numerically. Therefore the
field of stress trajectories can be considered as known when the argument of D is known at any point of the
domain, except singular points which will be analysed later in the subsection entitled singular points.

In the case of elasticity, the stress function D can be referred to as a bi-holomorphic function ! in the
view of the fact that it satisfies (7), i.e. its first derivative with respect to the conjugated variable is the
holomorphic function @'(z) introduced above.

Now taking into account the expression of D via the holomorphic functions one can reduce the general
mathematical formulation mentioned earlier to the problem of the determination of stress trajectories.

Given the argument of the stress deviator function D at discrete points z; (j = 1,..., N) as o, identify the
function « = «(z,z) that is close to a; at the points z; and represents itself as the argument of the bi-
holomorphic function D(z,z) =z®'(z) + ¥(z) everywhere inside the domain @ including its boundary.

It is seen further that any solution of this elastic problem virtually determines the bi-holomorphic
function D as well as the harmonic function P.

It should be noted that since not every function o = o(z,z) satisfies elastic equations (Mukhamediev and
Galybin, 2004), then one may expect certain difficulties solving the problem if «; are chosen arbitrary,
although an elastic solution can be found in this case as well due to the finite number of data.

! This definition is different from the definition of polyholomorphic (or polyanalytic) functions accepted in some mathematical
works; for instance, Gakhov (1990) has introduced Y¢_,(22)¥ @, () as a polyanalytic function of nth order if ¢, are holomorphic. If
such a definition has been used here then the holomorphic function @' (z) would have zero at the origin, which narrows the considered
class of elastic problem.
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3. Method of solution
3.1. Reduction to overdetermined system of linear algebraic equations

Solution is based on the following equality that takes place for the stress function D everywhere within
the domain considered

Im {e’i“(“)D(z,Z)} =0, z€Q (11)

Equality (11) is valid for both elastic and inelastic cases; it only expresses the fact that e “D is a real valued
function, the modulus of D. In the case of elasticity considered here, one can take into account the second
formula in (4) and rewrite (11) in terms of holomorphic functions as follows

Im{e’i“(m [zq)/(z) + q/(z)] } =0, z€Q (12)

Holomorphic functions @'(z) and ¥(z) are sough further in the form of linear combinations of linearly
independent pre-assigned functions R;(z) that are also holomorphic in Q.

n n—1

V(z) =) aRl(z), P = cmnRil) (13)

k=0 k=0

Constants ¢; are unknown and should be determined while solving the problem, after which the argument
of the bi-holomorphic function becomes known as well as the function itself.

Note that in (13) the combinations for holomorphic functions may have different number of terms. It is
assumed however that the representation for @'(z) has one term less than that for ¥(z), which is not
compulsory but it will provide the same number of terms in both stress functions P and D. It also should be
noted that Ry(z) = 1 is used further, regardless of the choice of the other function Ry(z).

Substitution of (13) into (4) leads to the following form for the bi-holomorphic function

2n
N\ =5 o , _ -\ R]{(Z)7 nggl’l
Dl =@+ ¥ =Y and,  AGa = (B VT (14)

Eq. (14) being substituted into (12) results in the following functional equation

2n
Im) e ™ F(z,z) =0, z€Q (15)

k=0

Eq. (15) is further reduced to a system of linear algebraic equations with respect to unknown constants c¢;.
Since the function « is known at the points z; one obtains by discretization of (15) the following system of N
complex equations for the determination of 2n + 1 complex constants

2n
ImZe-i“fa(zj,zj)ck =0, j=1,...,N (16)

k=0

Eq. (16) is a homogeneous one, thus at least one extra condition is required in order to find its non-trivial
solution. As it is evident from formulae (11)—(16), the multiplication of (16) by any real constant does not
violate this system, which means that any solution satisfying (16) can be normalised by a real constant. This
constant can be chosen from the condition that the average modulus of D over the domain is unity. Since
|D| = e~D, the extra equation assumes the form
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N .
> Y e A )G =N (17)

It is convenient to rewrite system (16) and (17) in a matrix form by presenting the complex constants as
¢r = Xi + 1Xo,1441 (and hence introducing a vector X of 4n + 3 real unknowns) and separating the real and
imaginary parts of complex equations, which leads to

AX=B (18)

where A is (N + 1) x (4n + 3) matrix of the system with the coefficients 4, ; defined below; X is (4n + 3)
vector of real unknowns X;; and B is (N + 1) vector all components of which are zero except of the last one
that is equal to N due to (17)

Im [e—i“fﬂ,(z,,zj)] : 0<k<2n
Ay = A , j=1,...,N
Im |:1 6_11,E72n71 (Z],Ej):| s 27’[ < k S 4" + 1
(19)
S e ER(z,2), 0<hk<2n
AN+1J€ = N - —ig _
Z_/:1 ie " F ou1(z;,2), 2n<k<4n+1

A redundant system (18) is solved further by the least squares method provided that N > 4n + 2. However,
this method alone is not able to ensure stability of the obtained solution caused, for instance, by the
possible ill-posedness of the problem.

4. Solution of the linear system

It should be pointed out that the right-hand side of system (18), vector B = (0,...,0,N )T, is known
exactly, while the coefficients of the matrix A depend on data quality. This situation is different from that
specific for ill-posed problems of fitting, firstly because stability of solutions cannot be attributed to errors
in the right-hand side and secondly because the matrix A is not necessary ill-conditioned. In the latter case,
there is no need to apply any regularisation procedures common for ill-posed problems, as those presented
in Tikhonov and Arsenin (1977). Therefore, it is proposed to control the condition number of matrix A
during solving the system, which gives the indication whether the matrix is ill-conditioned or not.

There are two main sources that can make the matrix A to be ill-conditioned. First of all Eq. (17) does
not guarantee that the rank of the system (18) is equal to 4n + 3 even if N > 4n + 2. This special case is
analysed in the next subsection. In addition, stress orientations expressed by the angles «; are subjected to
experimental errors that, in principle, can bring incorrectness into initially well-posed problem.

The method employed here eliminates both these sources automatically. It is based on the singular value
decomposition method (see, e.g., Golub and Loan, 1989), which allows for easy control of the condition
number, CN, defined as the ratio of largest and smallest singular values. If the condition number is greater
than a specified critical value, CN*, then the matrix A in (18) is replaced by a close matrix A" which rank is
less that rank(A). The matrix A’ is close to A in the sense that their greatest singular values coincide. This
idea is widely used in image processing in order to reduce amount of data stored or transmitted (e.g.,
Andrews and Patterson, 1975; Forsythe et al., 1977; Kahar et al., 1989). Galybin (2002) has applied this
approach for the regularisation of ill-posed problems of the identification of cohesive stresses in the process
zone ahead of the crack tip and recovering of softening curves, in which matrix A was independent of input
data. Specific details are presented below.
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Firstly the singular value decomposition of A (N + 1) x (4n + 3)) is found in the form A = UDV",
where U (N +1) x (N +1)) and V ((4n+ 3) x (4n+3)) are orthogonal matrices and D ((N + 1) x
(4n+3)) is a diagonal matrix formed by the singular values, d; >0, placed in descending order,
dy>=>dy > -+ = dy3. Secondly the matrix D is truncated by replacing least singular values by zeroes,
which produces a diagonal matrix D' having rank K: D' = diag{d,,d>, ...,dx,0...0} Then the matrix A’
((N 4 1) x (4n +3)) of the rank K is determined as A" = UD'V". Finally, the system in (18) is replaced by
the system A'X = B, solution of which is given by

X = VD'U'B (20)

Here D" is the diagonal matrix (4n+3)x (N+1) of the rank K<n+3: D" =diag{d" d,",
cooydg'0,.. 0}

In the case CN < CN* no truncation of matrix D is performed, thus Eq. (20) provides exact solutions of
initial system (18).

4.1. Harmonic argument

It follows from (4) and (8) that the argument o can be decomposed into the following sum

o(z,z) = arg (tb’(z)) + arg (z + (Iq:’((?) ) (21)

The first term in the left-hand side of (21) is a harmonic function while the second term is the argument of a
complex-valued harmonic function that, in general, it is not a holomorphic one. The total argument « is
harmonic if the second term in (21) is omitted or constant. For instance, in the case of normally loaded half-
plane or crack where ¥(z) = —z®'(z), it is equal to £x/2. Circular boundaries present other examples that
lead to the harmonic argument of the bi-holomorphic function. The general expression for this function can
be taken in the form

D(z,z) = (ao +az+az+ azzé)x(z), Im(ay) = Im(ay) =0 (22)

where y(z) is a holomorphic function. It should be noted the term in parenthesis in the right-hand side of
Eq. (22) is a real valued function, thus the necessary condition is obvious; for the rigorous proof of suf-
ficiency of the representation (22) see Mukhamediev and Galybin (2004).

Eq. (22) also shows that there are four real constants (ag, Re(a;),Im(a;),a;) that do not affect stress
trajectories in this special case. They cannot be determined by solving system (18), which manifests in the
decrease of rank(A). For instance, if y(z) =z and «; are known exactly, rank(A) decreases by three units
provided that the average modulus of D over the domain is unity, which eliminates one independent
constant.

For continuous data, the direct substitution of «(z,z) into Laplace’s equation verifies if argument is
harmonic or not. With some tolerance, this can also be done for exactly known discrete data. However, the
presence of experimental errors makes it impossible to distinguish a priori the case of harmonic and non-
harmonic arguments. In applications, it can be recommended to seek solution from the class of non-har-
monic arguments and check afterwards if the result indicates the harmonic argument. This can be achieved,
for instance, by verifying a posteriori the following relationships between complex potentials that follow
from (22)

(211 + azz)(P’(z) — (d() + alz)T(z) =0 (23)

However, if there is no clear indication in data then, in principle, these two cases should be considered
separately, followed by comparison of the results in order to decide between the two variants.
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System (18) can be substantially simplified for the case (22). Thus, by substituting y(z) = |y(z)| el )]
into (22), taking logarithm of both parts and separating the imaginary part one finds

Iny(z) —Iny(z) = 2ia(z,z), ofz,z) = arg[x(z)) (24)

Further, a linear system could be formed as described above, in which the only holomorphic function has to
be determined. Moreover, the matrix of this system would be independent of «, thus the errors can only be
attributed to the right-hand side of the system. This probably would be the best way to obtain a solution in
the special case of harmonic argument, however it has been discarded because no singular points can be
detected by this approximation as explained below.

4.2. Singular points

Singular points in stress trajectories can be separated into two classes. The first class is referred to the
usually adopted meaning for singular points where stresses are discontinuous. The second class is referred
to in photoelasticity as isotropic points at which principal stresses are equal to each other hence no
principal directions exist. It should be noted that trajectories themselves can represent a continuous set of
isotropic points, but in this case the boundary coincides with a trajectory as, for instance, in the case of a
non-loaded isotropic plane having a crack which surfaces are subjected by normal loading. Hence, such
cases do not present any difficulties in identification of singular points. Positions of singular points of the
first class are also obvious for the case of notches, concentrated forces acting on the boundary or points of
discontinuity in boundary conditions (concentrated forces and/or couples that act within the domain are
exceptional). Therefore, the only isolated singular points of the second class (isotropic points) have to be
identified in the field of stress trajectories being reconstructed from the discrete data.

Two types of isotropic points of the first order are usually observed in photoelasticity, although the
existence of isotropic points of higher order is theoretically possible (e.g., Kuske and Robertson, 1974).
These points can be classified in accordance with the asymptotic behaviour of the stress deviator function
(Karakin and Mukhamediev, 1994) in the vicinity of its zero. Assuming this zero at the origin one has the
following expansion

D(z,z) = Az + Bz + - - (25)

If |4| > |B| one has singular point of 4-type and if |[4| < |B| then it is of B-type. Both these types may appear
simultaneously within the considered domain as shown in Fig. 2 which represents a fragment of the

Fig. 2. Singular points in the field of stress trajectories: A—interlocking isotropic point (4-type), B—non-interlocking isotropic point
(B-type), C—singular point under concentrated load. Fragment of trajectory field obtained in the experiment of bending of photo-
elastic beam, after Frocht (1941).
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trajectory field obtained in a photoelastic beam under four point bending load (after Frocht, 1941). Note
also the singular point C of the first class that corresponds to concentrated load on the boundary.

The following property of singular points should be pointed out. Let y, and y, be closed contours
encompassing isotropic points of the 4 and B-type respectively and let no other singular points within
these contours be present Then it is evident that principal directions gain an increment of 4= after the
complete traverse of these contours respectively. Therefore the angle «, argument of D, gains the incre-
ment —2(£m).

This property prohibits the application of Eq. (24) for the domains with isotropic points even if the
argument is a harmonic function. This is due to the fact that the principle of argument for holomorphic
functions (e.g., Gakhov, 1990) requires the compensation of the increment in the argument by introducing
poles or zeroes within the contour. However, they are not present there. In principle, in the vicinity of an
isotropic point, zy, one might extract the factors (z — z) or (z — z) from the function D(z,z) with the aim to
make the rest holomorphic. However, this would require a priory identification of the isotropic points that
is a separate problem. The approach based on (13) and (14) is free from these shortcomings and it allows for
simultaneous recovering the isotropic point of the both types.

5. Model examples
5.1. Synthetic example: recovering of trajectories with singular points

This subsection presents an artificial example in which principal directions are modelled by a certain
stress function Digear(z,z) that is analytically defined in square domain Q; = {|x|<1,|y| < 1}. The stress
function is calculated at a number of points to produce discrete data followed by the introduction of errors
at each data point in order to model experimental observations. The scope of this section is to investigate
the accuracy in the reconstruction of stress trajectories and stress functions as well as the possibility of
recovering the isotropic points of both types mentioned above. For this purpose, the bi-holomorphic
function D has been taken in the following simple form

Diea(2,2) = Coz — C1) (2 - 62) (26)

where C; and C, are located within Q;. From the comparison of (26) and (25) it is evident that these points
are isotropic points of B and A-types correspondingly.
Particular form for the ideal mean stress is taken in the form

Pideal(z, E) = RC[C()Z(Z — 2C1)] (27)
The discrete data are found from (26) as follows
0, = —3arg [Disea (2, Z))] + 1, (28)

Data points Z; (j = 1,...,N) have been introduced either regularly or randomly, but in the latter case they
also have been uniformly distributed within the square Q2 and generated by MathCAD 6 PLUS built-in
procedure rnd(x). The errors 7, have been generated by the procedure rnorn(N, mean, stdev) as random
numbers normally distributed with zero mean and given standard deviation. The number of data points
varies depending on the number of unknown coefficients in expansion (13) remaining N = 10z in all cal-
culations performed. Complex potentials @'(z) and ¥(z) in (13) have been sought as polynomials of » and
n — 1 degrees respectively, i.e. Ri(z) =2 (k=0,...,n).
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The following characteristics have been used for the comparison of ideal and recovered stress functions:

¢ Dislocations of recovered singular points from ideal positions p, = |C; — z;|, k = 1,2, where z] are two
different roots of the equation D, (z,z) = 0 found within the square Q; they are numbered with respect
to the closest singular point Cj.

e Deviation of ideal and recovered stress functions calculated as standard deviations of three arrays AM,
AA and AP which elements represent the differences of ideal and recovered moduli AM and arguments
AA of the stress deviator and mean stresses AP respectively at a set of points z,, (m = 1...Ny) regularly
distributed within the square €, i.e. AM,, = |Dideat(Zm;Zm)| — |Drec(ZmyZm)|» Adm = arg(Dideat(Zms Zm))—
arg(Drec(zm, Zm)) and AP,, = |Pacai(ZmsZm)| — |Prec(zm;Zn)|; note that the nodes Z; and the points z, are
different.

In order to illustrate the results of reconstructions of the stress field an example is presented below in
which the following parameters have been used C, =0.5+0.5, C,=-0.5-0.3i, n =4, N =40,
Ny = 100. The errors introduced in this example were within the range (—5.8°, 12.2°) with the standard
deviation of stdev = 5°. Fig. 3 presents a pattern of one family of recovered stress trajectories, i.e. the
angle 0 = —0.5arg(Dy..(z,2)), and positions of singular points that are shown by symbols. The recovered
trajectories are very close to the ideal ones; they are not shown in the figure, stdev(AA) = 23.3° in this
example. The following dislocations of the recovered singular points from the ideal ones have been found:
p; = 0.071, p, =0.04. Figs. 4 and 5 represent contour maps of ideal and recovered maximum shear
stresses 7(z,z) and mean stresses, P(z,z). The latter is obtained from D, (z,z) by integrating the equations
of equilibrium and omitting the additive constant (for the sake of comparison with (27), where this
constant is not present). Both figures illustrate good agreement of ideal and recovered characteristics of
the stress fields; in this example, stdev(AM) = 0.138, stdev(AP) = 0.15 and means of these arrays are zero,
which is provided by the proper choice of the real multiplicative constant in the recovered solution,

Diec(z,2).
Two other types of approximating functions R, have also been examined: polynomials with random
roots, Ri(z) = Hfzo(z —¢;), (¢; € Q), and Legendre polynomials, R(z) = Pi(z), Pi(z) = 505 S (x* — 1)"

that have roots on the real axis. No essential difference in results has been noticed.

0.5

N

VDAL

INNS

I

-1

-1 -0.5 0 0.5

Fig. 3. Stress trajectories recovered from (28); circles are ideal positions of singular points, squares are recovered positions of singular
points.
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Fig. 5. Contour maps of ideal (left) and recovered (right) mean stresses.

5.2. Elastic disk: harmonic argument

This synthetic example illustrates the approach to the reconstruction of stress functions for the case of
harmonic argument. The solution is sought in the class of harmonic arguments only regardless of errors
introduced.

Let an elastic disk of unit radius be loaded along a diameter by two equal and opposite concentrated
forces, p, then the bi-holomorphic function can be obtained from complex potentials presented by Mus-
khelishvili (1953) as follows

2p 1 —2zz

Digeal(2,2) = - m

(29)

Here the real axis coincides with the direction of the applied forces.

It is evident from (29) that the argument of Djy, is @ harmonic function since the denominator of the
fraction in (29) is holomorphic while its numerator is real valued. Therefore, any particular solution,
Dye.(z,2), reconstructed from the exactly known discrete data is not capable to recover the numerator of the
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fraction in (29), which eventually leads to the general solution in the form (22) that contains up to four real
constants.

The domain, €y, analysed further is the square inscribed into the unite circle, i.e. Q, =
{z:|Re(2)| < 272, [Im(z)| < 27'/?}. Contour map of maximum shear stresses and stress trajectories ob-
tained from (29) within Q, are presented in Fig. 6 for p = 1. Further, they referred to as ideal modulus and
ideal stress trajectories correspondingly The discrete data are found from (29) by formula (28) in which the
nodes Z; (j=1,...,N) have been introduced regularly within the square, Z; € Q;; in examples below
N = 100. Noise, 1, is modelled as in the previous subsection.

Despite the absence of singular points in the trajectory field (Fig. 6), no special programme has been
developed for this case: solution is still sought in the form (14) by putting F;(z,z) = 0 for all £ > n. This
leads to the reduction of the dimension of the linear system to (N + 1) x (2n + 3) linear algebraic equa-
tions, which is achieved by setting the critical condition number CN* =10° as described above. As the
consequence of this, one still has the same restriction on the number of approximating functions,
4n + 2 < N, i.e. n <24 in this case.

Similarly to the previous subsection, three types of R; have been examined: polynomials, polynomials
with random roots and Legendre polynomials. No essential difference in results obtained with the use of
different R, (z) has been noticed while n < 16 regardless of whether the noise is present or not. However, the
analysis has shown that the condition number, CN, increases with the increasing number of approximation
functions (parameter n). It has been found that for polynomials the increase is less than for the other two
types used, for instance, for n = 12: CN = 6x 10’ for Legendre polynomials, CN varies in the range (0.1-
33)x 10 for different polynomials with random roots, while for polynomials CN = 51. Therefore, R;(z) = z*
are used in this example, which provides better stability in recovering the stress function Dy..

The result of fitting is obtained as a polynomial function y,..(z) that is holomorphic in finite domain Q.
The arguments of y,..(z) and Diea(z,2) in (29) are close to each other due to fitting, while their moduli are
different because they are moduli of holomorphic and bi-holomorphic functions respectively. As it has been
mentioned above, the general solution depends on four arbitrary real constants that cannot be determined
from the data alone. The approximate solution that corresponds to the ideal one can be considered as a
particular solution by specifying the coefficients ay, Re(a;), Im(a;), ay in (22). For the case when a; =0 and
a, =0 one obtains a solution by means of holomorphic function ayy,..(z). The modulus of this function is
presented in Fig. 7a that is different from the ideal one shown in Fig. 6 (no noise was introduced). When
coeflicients are chosen as a; = 0, ay = a, = a, in order to address the fact that the discrete data were formed
from a bi-holomorphic function (29), then solution assumes the form

T
0.510.2—0.3 0.2~] 0.5
04— /—\
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— //—\
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J 07 \
& 0.8\ —
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Fig. 6. Ideal contour map of modulus (left) and ideal trajectories (right) within the square €;,.
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Fig. 7. Moduli, n = 12: without correction (left) with correction (right).

n

DFGC(Z7 Z) = a(l - ZZ)Xrec(z)5 Xrec(z) = chzk (30)
=0
Contour map of |Dy(z,2)| is shown in Fig. 7b for the case when no noise was added to the discrete data.
The coefficient a is chosen such that mean(Djge.) = mean(Dy.) in Qy, which provides better visual
assessment of ideal and recovered contour maps of maximum principal stresses.

The analysis of different sets of noises that disturbs the data has been performed. It shows that the
increase in the degree of polynomials from n = 2 to 12 leads to the better agreement between recovered and
ideal characteristics, i.e. stress trajectories, maximum shear stresses and mean stresses. Further increase
does not lead to the improvement of the results, which is explained by the loss of redundancy.

5.3. An example from photoelasticity

The field of trajectories depicted in Fig. 2 has been used to prepare discrete data for the reconstruction of
stress trajectories and maximum shear stresses. For this purpose, the coordinates of intersection points of
two families of mutually orthogonal trajectories have been digitised by software Surfer directly from the
screen. After that, the principal directions have been obtained as the orientations of spans connecting the
intersection points lying on the trajectories presented by solid lines. Therefore, two sources of errors have
been introduced: by digitising procedure and by approximation of tangents by spans.

The domain considered represents itself the rectangle |x| < 1, |y| < 1.057. The input data is presented in
Fig. 8a where principal directions are shown by 73 segments. The data is non-uniform and the presence of
isotropic points is not evident from the figure.

Fig. 8b presents the reconstructed stress trajectories and singular points by the procedure described
above in the previous sections for n = 4. The functions R, (z) used were as follows

Ri(2) = (2 — Zpole) 2", Zpoe = 0.2+ 1.4 (31)

The weight function in (31) has been chosen in order to address the existence of singular point C where the
concentrated force is applied to the boundary, see Fig. 2. Although the point of application of this force is
known exactly, here the position of this point has been chosen approximately in order to test whether this
affects the results of the reconstruction.

Comparison of Figs. 8b and 2 demonstrate satisfactory agreement of both the singular points and stress
trajectories obtained by photoelastic methods and recovered by the proposed procedure. It has been found
that the example presented is not very sensitive to the accurate account for the position of singular points of C-
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Fig. 8. Recovering of elastic stress trajectories and isotropic points for n = 4: (a) input data 73 points, no singular points specified,
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type. However, the introduction of the weight function in (31) is beneficial and allows one to reconstruct stress
trajectories more accurately than in the case without the weight function. It should be noted that the increase
of the number of approximating functions used in reconstruction without the weight improves results, thus for
n = 10 stress trajectories are somewhat similar to those presented in Fig. 8b. However, further increase of n
leads to the substantial loss of redundancy, which affects the results and does not lead to improvement.

Maximum shear stresses are presented in Fig. 9. Fig. 9a shows a fragment of the stress pattern observed
in photoelasticity. This fragment has been extracted from a complete pattern presented in Frocht (1941); it
corresponds to the area for which the reconstruction of stress trajectories has been performed, i.e. to the
region shown in Fig. 2. Fig. 9b illustrates the results of reconstruction of the modulus of the stress function
D. Contour lines presented in this figure have been drawn with the intervals of 0.15 chosen to make the
black areas in the middles of both figures be of similar sizes.

5.4. Geophysical application.: Australian stress field

This subsection presents preliminary results of the investigation of the Australian stress field. Currently
the database of stress orientations (Reinecker et al., 2003) has more than 13,600 data points around the

7

-0.51

(a) . (b) -0.5 0 0.5

Fig. 9. Maximum shear stresses: (a) fragment of a stress pattern (extracted from Frocht, 1941); (b) contour map of recovered modulus
of the stress function D.
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globe at which orientations of principal stresses have been measured by a number of special methods. The
data is of different quality ranging from E (low) to A (high). In this paper we use the data located within the
region (—40° S, —10° S) and (110° W, 155° W) with the quality A, B and C (269 points in total). It should be
noted that the data are non-uniform within the continent, which present an obstacle for the analysis. There
are few clusters where the data are dense; they are shown in Fig. 10 by black rectangles. These clusters have
been obtained by plotting a density function that was found by calculating the number of data points over
the moving window of approximately 2°x 2° in size with the step of 0.65°. This window size is chosen as the
square root of the ratio of the area of the region and the number of data points; the step is three times less
then the window size. It has been assumed that data form a cluster if five or more points are located within
the window. This analysis indicates that the number of functions R, (z) in approximation (13) should not be
very large. Consequently, if each cluster in Fig. 10 was considered as a single datum then it follows from
N > 4n + 3 that n = 2 would have been used in the analysis. Coblentz et al. (1995) employed this way to
reduce the data in their elastic finite-element modelling of Australian stress field, which also required the
averaging of stress orientations over the marked areas. This procedure, however, strongly depends on the
method applied; therefore in contrast to Coblentz et al. (1995) no averaging of data within the clusters has
been performed.

-10
-

-20°H

-30°H

-40° L | | l

120° 130° 140° 150°

Fig. 10. Data clusters (five or more measurements available) within the investigated region.
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20°Fod%e

-30°

-40°

120° 130° 140° 150°

Fig. 11. Recovered trajectories and singular point (symbol) in Australia, Ny,, = 269, n = 2, data is presented by black segments.
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In the present analysis polynomials were used as approximating functions, R;(z) = 2, their degrees were
varied from n = 1 to 10. Fig. 11 illustrates the trajectory field obtained for the Australian continent in the
case when n = 2.

In all cases considered, the presence of a singular point of the B-type within the continent has been
revealed; it is shown in Fig. 11 by a small black rhombus. Position of this point slightly varies within the
region (—28° S, —25° S) and (135° W, 139° W) for 1 < n< 10 (=31° S, 144° W for n = 1). It should be noted
that for n > 4 other singular points appears near the boundaries of the considered domain, however they
are not stable, which indicates that these are not real but likely caused by inconsistence of clustered data
and degree of polynomials.

5.5. Closure

Examples presented in the previous section demonstrate that elastic stress fields can be recovered with
satisfactory accuracy from the discrete data on principal directions. It is proposed to fit the data to the
calculated principal directions obtained from the general solution well known in plane elasticity. This
approach allows one to undertake a revision of the methods used in photoelasticity in the problem of the
separation of principal stresses from the stress trajectories. The separation can be performed without
the integration of the equilibrium equations as currently used. The application of the proposed technique to
the geophysical problem of the reconstruction of tectonic stresses in the earth’s crust creates new per-
spectives in the analysis of geophysical data currently available.
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